首页> 外文OA文献 >Fast Assembly of Gold Nanoparticles in Large-Area 2-D Nanogrids Using a One-Step, Near-Infrared Radiation-Assisted Evaporation Process
【2h】

Fast Assembly of Gold Nanoparticles in Large-Area 2-D Nanogrids Using a One-Step, Near-Infrared Radiation-Assisted Evaporation Process

机译:使用一步,近红外辐射辅助蒸发工艺在大面积二维纳米网格中快速组装金纳米颗粒

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When fabricating photonic crystals from suspensions in volatile liquids using the horizontal deposition method, the conventional approach is to evaporate slowly to increase the time for particles to settle in an ordered, periodic close-packed structure. Here, we show that the greatest ordering of 10 nm aqueous gold nanoparticles (AuNPs) in a template of larger spherical polymer particles (mean diameter of 338 nm) is achieved with very fast water evaporation rates obtained with near-infrared radiative heating. Fabrication of arrays over areas of a few cm2 takes only seven minutes. The assembly process requires that the evaporation rate is fast relative to the particles’ Brownian diffusion. Then a two-dimensional colloidal crystal forms at the falling surface, which acts as a sieve through which the AuNPs pass, according to our Langevin dynamics computer simulations. With sufficiently fast evaporation rates, we create a hybrid structure consisting of a two-dimensional AuNP nanoarray (or “nanogrid”) on top of a three-dimensional polymer opal. The process is simple, fast and one-step. The interplay between the optical response of the plasmonic Au nanoarray and the microstructuring of the photonic opal results in unusual optical spectra with two extinction peaks, which are analyzed via finite-difference time-domain method simulations. Comparison between experimental and modelling results reveals a strong interplay of plasmonic modes and collective photonic effects, including the formation of a high-order stop band and slow-light enhanced plasmonic absorption. The structures, and hence their optical signatures, are tuned by adjusting the evaporation rate via the infrared power density.
机译:当使用水平沉积法从挥发性液体中的悬浮液制造光子晶体时,常规方法是缓慢蒸发,以增加颗粒沉降在有序的周期性密堆积结构中的时间。在这里,我们显示在较大球形聚合物颗粒(平均直径为338 nm)的模板中,最大10 nm水性金纳米颗粒(AuNPs)的排列是通过近红外辐射加热获得的非常快的水蒸发速率实现的。在几平方厘米的面积上制造阵列仅需七分钟。组装过程要求蒸发速度要相对于粒子的布朗扩散快。然后,根据我们的Langevin动力学计算机模拟,二维的胶体晶体在下降的表面形成,充当AuNP通过的筛子。以足够快的蒸发速度,我们在三维聚合物蛋白石的顶部创建了一个由二维AuNP纳米阵列(或“ nanogrid”)组成的混合结构。该过程简单,快速且一步一步。等离子体Au纳米阵列的光学响应和光子蛋白石的微结构之间的相互作用导致具有两个消光峰的异常光谱,并通过有限差分时域方法模拟对其进行了分析。实验结果与模型结果之间的比较表明,等离子体模式与集体光子效应之间具有很强的相互作用,包括高阶阻带的形成和慢光增强的等离子体吸收。通过红外功率密度调节蒸发速率,可以调节结构及其光学特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号